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Introduction: FSI 

Fluid Dynamics Structural Dynamic 

Acoustic Fluid 

ASSUMPTIONS! 

 Compressible and Irrotational flow 

 No body and viscous forces (inviscid) 

 Mean density and pressure are uniform       

 Small disturbances 

 Medium at rest  and Homogeneous 
 

Fluid Structure Interface 

Methods To Solve  FSI 

Monolithic approach:  Partitioned approach:  
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Engineering Applications 

1. Ship stern Tube 2. Overboard discharge line 

Tube 

Shaft Video 

PICT0123.AVI
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Objective and Scientific Contribution 

Objective 

 Develop acoustic FSI-FEM using ANSYS.  

 Perform vibration analysis, parametric study and mesh 
adaptation.  

 Determine shaft, and pipes vibration characteristic. 

 Determine added mass coefficient of the components 

 Finally to propose quick and simple formulae for added mass. 

 

Contribution 

 Determine the effect of surrounding fluid on important 
construction members. 

 Make known important design parameters for complex FSI of 
concerned problems.   
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Bending Vibration Analysis Of Shaft And Tube Coupled 

With Fluids 

Part-1 BVA of stern tube Part-2 BVA of OVBD Discharge line 

Assumptions 
Material: Steel (shaft, tube, and caisson) and Fiber reinforced pipe 
Fluid part : Acoustic fluid 
Boundary cond. : Simply supported for part-1 and rigidly fixed for 
part-2 
 

Infinite fluid 
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Acoustic FSI FE Model Techniques (ANSYS) 

Boundary Conditions and Interfaces Definitions 

Displacement (Ux, Uy, Uz) and pressure DOF for fluid in contact 

 Only pressure DOF for other domain (KEYOPT(2)=1) 

 



   7 University of Rostock | Naval Architecture and Ocean Engineering February  2012 

CASE-1 Bending Vibration of Solid Elastic Dry Shaft and 

Elastic Tube  

Validation with analytical result 

Problems with 2D models 

r2=0.18m r2=0.3555m r2=0.5688m 
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CASE-2 BVA of Solid Elastic Shaft in Infinite Fluid 

 

Determination of proper infinite fluid outer extreme Identification of proper mesh size 

2r1 

r4 

r4=(2 - 3)r1 

 Set pressure zero at 2 to 3 times of outer diameter (error <1%) 
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CASE-3 BVA of Solid Elastic Shaft in Fluid Filled Rigid Tube 

 

2D Model 
3D Model 

Graph used to determine Cm (Grim O., 1975) 

ACM mfa 

Theoretical added mass 

This result will be compared with 
ANSYS 2D and 3D 

L = lambda/2 
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CASE-3 Models Validation with Theoretical results 

As shaft radius increases As tube radius decreases 
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CASE-4 BVA of Solid Elastic Shaft in Fluid Filled Elastic 

Flexible Tube Immersed in Infinite Fluid  

 Main assumptions 
Simply supported 
Acoustic fluid and initially at rest 

Acoustic FSI-3D Model 

Pressure distribution for shaft 
resonance 

Pressure distribution for tube 
resonance 
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Added Mass Coefficient of Stern Tube 

Shaft cm as r1 increases 

Shaft cm as r2 decreases 

Tube Cm as r1 increases 

Tube Cm as r2 decreases 

Added mass= ACM mfa 
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Comparison of Different CASES 
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CASE-4  50% more affected 

as compared to CASE-3 
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Comparison of Percentage Decrement in Shaft and 

Tube Natural Frequency  

 

-Shaft frequency affected 

much as with change in its 

radius. 

As the gap decreases the 

natural frequency of shaft 

increase and of the tube 

decreases 
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Influence of Density 

 

 

 

 

 

 

•Only fluid between shaft and 

tube changed 

 

•Shaft natural frequency 

influenced more. 
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Harmonic Analysis 

-2kN harmonic force applied at the center on shaft. 

To determine steady state response of shaft and tube. 

To validate modal analysis. 

To determine vibration transmission from shaft to tube 

and vice versa through fluid. 
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PART-2 Bending vibration Analysis of OVBD Line 

Assumptions: 

 Ballast water considered as infinite fluid 

 Caisson rigidly fixed at 4 points! 
 Pipe rigidly fixed at two extremes 

 

Real model 
Simplified  model 
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Pipe natural frequency  

Mode-2 – 76%  (3.9 - 0.9Hz) 
Mode-3 – 74%  (8.4 - 2. 2Hz) 
-Almost no effect of ballast water 
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Caisson  natural frequency  

-Much affected by ballast water 
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Effect of Ballast Water on Wetted In and Out Caisson 

Mode-1 Mode-2 

Frequency percentage decrement  

Bottom 

Top 

Bottom 

Top 
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Forced OVBD System Without Ballast Water 

2kN  harmonic force applied to 
the pipe at the center 

(m) 
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 Conclusion and Future Direction 

 

o Acoustic FSI FEM can simulate BVA with minimum error. 

o Stern tube BV much affected by added mass 

o Added mass coefficient depend on absolute dimension of shaft 
and tube, not only on ratio. 

o Added mass coefficient of shaft increase as gap decreases 

o Added mass coefficient of tube decrease as the gap decreases 

o Natural frequency and added mass of OVBD discharge line are 
much affected by surrounding fluid. 

o No influence of ballast water on pipe natural frequency 

o Caisson frequency depend on ballast water condition as well 
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